Correlating Nitrogen Accumulation With Temporal Fuel Cell Performance
نویسندگان
چکیده
The permeability or crossover characteristics of a typical perfluorosulfonic acid base type membrane are used for the temporal and spatial estimations of nitrogen concentration along the anode channels of a polymer electrolyte membrane fuel cell stack. The predicted nitrogen accumulation is then used to estimate the impact of local fuel starvation on stack voltage through the notion of apparent current density. Despite the simplifying assumptions on the water accumulation and membrane hydration levels, the calibrated model predicts reasonably well the response of a 20-cell stack with a dead-ended anode. Specifically, the predicted voltage decay and the estimated gas composition at the anode outlet are experimentally validated using the stack-averaged voltage and a mass spectrometer. This work shows that the crossover of nitrogen and its accumulation in the anode can cause a considerable decay in stack voltage and should be taken into account under high hydrogen utilization conditions. DOI: 10.1115/1.3177447
منابع مشابه
Experimental Study on a 1000W Dead-End H2/O2 PEM Fuel Cell Stack with Cascade Type for Improving Fuel Utilization
Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels might cause a local fuel starvation degrading the performance and durability of PEMFCs. In this study, a brand new design for a polymer electrolyte membrane...
متن کاملPreparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملPerformance Improvement of PEM Fuel Cells Using Air Channel Indentation; Part I: Mechanisms to Enrich Oxygen Concentration in Catalyst Layer
A three dimensional, compressible, steady, one phase flow of reactant-product mixture in the air side electrode of proton exchange membrane fuel cell (PEMFC) is numerically studied in this paper. The mixture is composed of three species: oxygen, nitrogen and water vapor. The performance of the cell is enhanced by partial blockage of the flow field channels. Various types of these blocks also ca...
متن کاملHigh-Performance Alkaline Direct Methanol Fuel Cell using a Nitrogen-Postdoped Anode A commercial PtRu/C catalyst postdoped with nitrogen demonstrates a significantly higher performance (?10– 20?% improvement) in the anode of an alkaline direct methanol fuel cell than an unmodified commercial PtRu/C
High-Performance Alkaline Direct Methanol Fuel Cell using a Nitrogen-Postdoped Anode Report Title A commercial PtRu/C catalyst postdoped with nitrogen demonstrates a significantly higher performance (?10–20?% improvement) in the anode of an alkaline direct methanol fuel cell than an unmodified commercial PtRu/C catalyst control. The enhanced performance shown herein is attributed at least parti...
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کامل